Моделирование выхода танкера в условную точку по заданной траектории

Ю.И. Юдин 1 , А.Ю. Юдин 2 , Г.И. Мартюк 2

 1 Судоводительский факультет МА МГТУ, кафедра судовождения 2 ОАО "Мурманское морское пароходство"

Аннотация. Для осуществления погрузки нефти в условиях открытого моря танкер должен выйти по заданной траектории в условную точку соединения приемного устройства танкера с трубопроводом, по которому осуществляется подача нефти с береговых или подводных накопительных емкостей. С учетом особенностей управления судном, осуществляющим движение по заданной траектории, наиболее приемлемой траекторией сближения танкера с условной точкой можно считать кривую погони. В статье представлены результаты моделирования процесса выхода танкера в условную точку по кривой погони, при наличии в районе маневрирования внешних возмущающих воздействий (ветер, волнение, течение).

Abstract. The paper considers the modelling of tanker arrival at a conventional point according to a given trajectory. The authors have proved that the most acceptable trajectory of tanker approaching to the conventional point is a pursuit path. The paper contains the results of this process modelling in the presence of the external disturbing factors (wind, heavy sea, current) in the manoeuvring region.

1. Ввеление

Движение танкера по заданной траектории является сложно управляемым процессом. Это обусловлено прежде всего недостаточной технической обеспеченностью танкера автоматическими или автоматизированными средствами управления, а также средствами контроля положения танкера относительно заданной траектории. Однако среди множества траекторий, которые могут рассматриваться как заданные, есть такие, движение по которым может быть реализовано с помощью имеющихся в настоящее время на судах технических средств. В частности, установленная на танкерах типа "Астрахань" компьютерная система для обеспечения постановки танкера к приемному устройству и дальнейшего контроля за его положением во время выполнения грузовой операции может быть использована для выполнения движения танкера по заданной траектории сближения. При этом в качестве траектории выхода танкера в условную точку (УТ) может выступать любая из известных классических траекторий сближения, а именно:

- 1) кривая погони, основным правилом движения по которой является удержание объекта сближения на нулевом курсовом угле;
- 2) кривая постоянного угла упреждения траектория танкера, осуществляющего выход к объекту сближения, удерживая его на постоянном курсовом угле;
- 3) кривая пропорционального сближения, когда угловая скорость вращения танкера пропорциональна скорости вращения линии, соединяющей танкер и объект сближения (линия визирования).

В данном случае наиболее подходящей для осуществления выхода танкера в условную точку траекторией сближения является кривая погони (*Локк*, 1958). Алгоритм управления судном при движении его по кривой погони достаточно прост. В соответствии с алгоритмом необходимо выполнять регулирование курса танкера с учетом положения его диаметральной плоскости относительно обозначенного для визуального наблюдения объекта сближения. Визуально объект сближения, в нашем случае условную точку, можно наблюдать на экране монитора компьютерной системы постановки танкера к приемному устройству. В районе швартовки работает дифференциальная GPS-система, которая позволяет с предельно возможной для нее точностью отобразить на экране монитора любую желаемую точку в соответствии с ее координатами, определяемыми с учетом фиксированных координат места подсоединения танкера (МПТ) к нефтепроводу и пеленга с МПТ на УТ. Пеленг на УТ будет совпадать с линией расположения шланга-швартова.

Очевидным преимуществом предлагаемого нами способа выхода в УТ является отсутствие у судоводителя необходимости определять и учитывать параметры суммарного сноса танкера под воздействием ветра, волнения и течения. В качестве ограничений при использовании кривой погони для выхода в УТ могут рассматриваться следующие факторы:

- наличие навигационных опасностей в районе швартовки;
- относительная исходная позиция танкера;
- управляемость танкера при движении по заданной траектории в условиях воздействия ветра и волнения;

- технические возможности рулевого устройства, прежде всего ограничения по углу перекладки руля;
- значения кинематических параметров, удовлетворяющие требованиям управляемости судна в конечной точке сближения.

Следовательно, для оценки возможности использования предлагаемого способа сближения необходимо провести модельные эксперименты, которые должны дать ответы на следующие вопросы:

- 1) существуют ли ограничения в выборе относительной начальной исходной позиции танкера;
- 2) какова величина предельных значений скорости ветра и его направления, а также балльности волнения, при которых танкер, движущейся в УТ с малой скоростью, сохранит управляемость;
- 3) каковы предельные значения угла перекладки руля при движении танкера по кривой погони с учетом начальных условий сближения;
- 4) какие значения имеют кинематические параметры движения танкера во время сближения, особенно в момент его завершения.

2. Законы изменения курса танкера и дистанции между танкером и УТ

Для модельных экспериментов по выходу танкера в УТ будем использовать систему координат, приведенную на рис. 1.

Значения координат танкера можно представить в виде зависимостей

$$x = x_{yT} - D\sin\psi$$
, $y = y_{yT} - D\cos\psi$. (1)

При этом очевидно, что

$$V$$
 X_{ym} V_{ym} V_{ym} V_{ym} V_{ym} V_{ym}

Рис. 1. Система координат

$$dx/dt = \upsilon \sin(\psi - \beta) + \upsilon_m \sin \psi_{st}; \qquad dy/dt = \upsilon \cos(\psi - \beta) + \upsilon_m \cos \psi_{st}. \tag{2}$$

Переменными величинами в уравнениях (1) и (2) являются: дистанция D до УТ; курс танкера ψ , угол дрейфа танкера β . Значение угла дрейфа определяется при решении уравнений движения танкера. Для нахождения значений дистанции D и курса ψ определим законы их изменения во времени.

Закон изменения дистанции может быть получен, если спроецировать векторы скорости танкера и течения на линию визирования. Тогда

$$dD/dt = -\left[\upsilon\cos\beta + \upsilon_m\cos(\psi - \psi_{st})\right]. \tag{3}$$

Закон изменения курса танкера при движении по кривой погони найдем, дифференцируя уравнение

$$tg \psi = x/y. (4)$$

при $x_{yr} = y_{yr} = 0$.

В результате с учетом уравнений (1) и (2) будем иметь

$$d\psi/dt = \{\upsilon \left[\sin(\psi - \beta)\cos\psi - \cos(\psi - \beta)\sin\psi\right] + \upsilon_m \left[\sin\psi_{st}\cos\psi - \cos\psi_{st}\sin\psi\right]\}/D. \tag{5}$$

или после несложных преобразований

$$d\psi/dt = -\left[\upsilon \sin\beta + \upsilon_m \sin(\psi - \psi_{st})\right]/D. \tag{6}$$

Полученный таким образом закон изменения курса танкера позволяет нам определить значение заданного курса в любой точке траектории сближения. Вычисленное значение $\psi_{\text{зад}}$ используется для формирования сигнала управления рулевой машиной σ , который аналитически может быть представлен в виде зависимости

$$\sigma = a_1(\psi_{3a\pi} - \psi) + a_2(d\psi/dt) + a_3(180 + \psi_{st} - \psi). \tag{7}$$

Последний член в правой части уравнения (7) обеспечивает формирование сигнала управления с учетом условия выхода танкера в УТ с курсом, противоположным направлению течения в районе швартовки. Значения коэффициентов a_1 , a_2 , a_3 в уравнении (7) выбраны в соответствии с рекомендациями А.Ш. Афремова и Н.А. Смолина (*Справочник*, 1985). В нашем случае $a_1 = -1,0$; $a_2 = -10,0$; $a_3 = -0,5$.

3. Закон изменения угла перекладки руля

Закон изменения угла перекладки руля $\alpha_r(t)$ для движения судна по заданной траектории определим, исходя из предположения, что управление рулем производится в автоматическом режиме, сигнал управления, вырабатываемый авторулевым, выражается уравнением (7). Угол перекладки руля в

(10)

зависимости от управляющего сигнала σ изменяется в соответствии с законом, аналитически записываемом в виде (по материалам экспериментов, опубликованных в (Березин, 1974)):

$$\alpha_{R}', \text{ если } |\alpha_{R}'| < 0,610865;$$

$$\alpha_{R} = +0,610865, \text{ если } \alpha_{R}' > 0,610865;$$

$$-0,610865, \text{ если } \alpha_{R}' < -0,610865.$$

$$f(\sigma), \text{ если } |\alpha_{R}'| \le 0,610865;$$

$$d\alpha_{R}'/dt = f(\sigma), \text{ если } \alpha_{R}' \cdot \sigma \le 0, |\alpha_{R}'| > 0,610865;$$

$$0, \text{ если } |\alpha_{R}' \cdot \sigma > 0, |\alpha_{R}'| > 0,610865.$$

$$0, \text{ если } |\sigma| \le 1,74 \cdot 10^{-2};$$

$$\sigma, \text{ если } |\sigma| > 1,74 \cdot 10^{-2};$$

$$f(\sigma) = +4,71 \cdot 10^{-2}, \text{ если } |\sigma| > 4,71 \cdot 10^{-2} \text{ и } \sigma > 0;$$

$$-4,71 \cdot 10^{-2}, \text{ если } |\sigma| > 4,71 \cdot 10^{-2} \text{ и } \sigma < 0.$$

$$(10)$$

Числовые значения параметров, входящих в выражения (8-10), определяются тактико-техническими характеристиками авторулевого AP 2000 Trackpilot, установленного на танкерах типа "Астрахань".

4. Анализ результатов моделирования

Для выполнения модельных экспериментов использована идентифицированная математическая модель танкера типа "Астрахань", полученная в работе (Степахно, 2005). На ее базе нами были выполнены модельные эксперименты по осуществлению выхода танкера в УТ с использованием рассматриваемой здесь траектории сближения. Основная цель эксперимента - оценка возможности выхода танкера в условную точку при различных сочетаниях начальных условий движения. Выбор начальных условий и их сочетаний был предопределен задачами, поставленными выше. В реально возможных пределах варьировались следующие параметры: скорость судна υ ; скорость течения υ_m ; исходная позиция танкера по отношению к направлению нефтепровода; начальный курс танкера; начальная дистанция между УТ и танкером; направление q_a и скорость ветра υ_a ; направление q_w и балльность волнения; состояние загрузки танкера (преимущественно в балласте, так как подход к месту швартовки осуществляется для приема нефти). В отличие от остальных параметров, направление течения ψ_{st} имело постоянное значение, т.е. $\psi_{cr} = 0$. Влияние мелководья не рассматривалось, так как с учетом результатов анализа, выполненного в работе (Мартнок и др., 2004), при малых скоростях мелководье на динамике движения танкера практически не сказывается. Всего было выполнено около 40 модельных экспериментов.

Результаты моделирования были представлены в виде траекторий движения танкера по кривой сближения и графиков зависимостей основных параметров, отражающих характер движения танкера и его положение на заданной траектории $\psi(t)$, D(t), $\psi_{\text{зад}}(t)$, $\beta(t)$, $\alpha_r(t)$; значение угловой скорости в момент выхода танкера в УТ фиксировалось отдельно. Ввиду достаточно большого объема экспериментального материала невозможно представить весь материал в рамках объема журнальной статьи, поэтому здесь приведены только наиболее типичные результаты моделирования. Например, на рис. 2 показаны траектории выхода танкера в УТ с различных начальных позиций.

На рис. 3 приведены графики изменения основных параметров движения в процессе сближения для случая 1 (рис. 2).

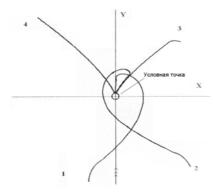


Рис. 2. Траектории подхода танкера к УТ из четырех начальных позиций: 1, 2, 3, 4 $(v = 2 \text{ M/c}, v_m = 1 \text{ M/c}, \psi_{st} = 0^\circ)$

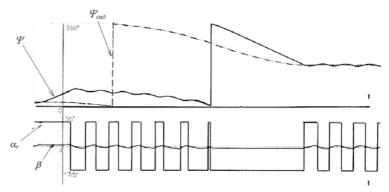


Рис. 3. Изменения курса танкера ψ и направления $\psi_{\text{зад}}$ на УТ (верхний график); изменение угла перекладки руля α_r и угла дрейфа β (нижний график)

Таблица

Начальная	Начальные значения параметров			Конечные значения параметров движения		
позиция	движения танкера			танкера		
танкера по	Направление	Курс	Дистанция	Направление	Курс	Дистанция
рис. 2	танкер \rightarrow УТ,	танкера ψ ,	танкер \rightarrow УТ	танкер \rightarrow УТ,	танкера ψ ,	танкер →УТ
	$\psi_{\text{зад}}$, град	град	D, м	$\psi_{\text{зад}}$, град	град	<i>D</i> , м
1	15	10	1500	181	176	50
2	318	321	1620	196	195	50
3	226	257	1319	226	207	50
4	140	145	1744	165	174	50

В таблице содержатся начальные и конечные значения основных параметров движения по всем начальным позициям танкера. В ней не нашли отражение следующие начальные значения параметров: скорость танкера $\upsilon=4$ уз, скорость течения в районе маневра $\upsilon_m=2$ уз; направление течения совпадает с положительным направлением оси Y. В рассматриваемом случае моделирование проводилось в условиях отсутствия воздействия внешних факторов (ветер, волнение), а загрузка танкера соответствовала состоянию танкера в балласте.

Конечное значение угла дрейфа β во всех случаях равно нулю, значения угловой скорости танкера при выходе в УТ: $\mathbf{1} - 0$; $\mathbf{2} - 1,745 \cdot 10^{-3}$; $\mathbf{3} - 2,618 \cdot 10^{-3}$; $\mathbf{4} - 1,222 \cdot 10^{-3}$ град/с.

Важным фактором, который необходимо учитывать при выборе исходной позиции для выполнения сближения, является соотношение скоростей танкера и течения. В связи с этим необходимо отметить, что, если их отношение находится в пределах $1,0 < \upsilon/\upsilon_m \le 2,0$, что наиболее вероятно в реальных условиях, угловая скорость танкера в момент окончания сближения стремится к нулю ($\omega \to 0$). При этом относительное исходное положение танкера значения не имеет. Однако при выходе значений отношения υ/υ_m из указанных пределов существенно ограничивается диапазон возможных исходных позиций танкера. Например, если выполняется условие $2,0 < \upsilon/\upsilon_m < 3,0$, выход танкера в УТ из позиций 1, 2 (см. рис. 2) становится невозможным из-за существенной разницы значений, с одной стороны, направлений линии визирования, с другой — курса танкера, а также из-за большого значения угловой скорости танкера в конечной точке сближения — $0,8 \le \omega \le 2,0$ град/с.

Безопасным в момент выхода танкера в УТ считается курс, отличающийся от направления нефтепровода не более чем на 10°.

Возможность безопасного выхода танкера в УТ из позиций 3, 4 ограничена соотношением скоростей υ/υ_m только при определенном сочетании начального курса танкера ψ_0 и начальной дистанции между танкером и УТ D_0 . Если $1,0 < \upsilon/\upsilon_m \le 3,0$, а начальная дистанция $D_0 \ge 1,0$ мили, то для того, чтобы сближение состоялось и было безопасным, значение начального курса ψ_0 может находиться в достаточно больших пределах, а именно $\psi_{st} \le \psi_0 \le (\psi_{st} + 180^\circ)$. При уменьшении начальной дистанции увеличивается разность между курсом танкера в момент его выхода в УТ и направлением линии расположения нефтепровода (совпадает с направлением течения $\psi_{st} = 0^\circ$).

Наличие ветра в районе швартовной операции не вносит серьезных коррективов в тактику выхода танкера в УТ. В данном случае необходимо учитывать влияние соотношения между скоростью судна υ и скоростью ветра υ_a на управляемость судна. Значение указанного соотношения ограничивается по соображениям соблюдения устойчивости танкера на курсе в последней стадии швартовки. В пределах рассчитанных ниже ограничений танкер способен выполнять выход в УТ по кривой погони.

Необходимо отметить, что, во-первых, наличие волнения в районе швартовной операции существенно затрудняет выход танкера в УТ при υ < 5 уз; во-вторых, однозначно исключается выход на швартовку, если направление бега волн противоположно направлению течения, при этом опасный сектор направлений бега волн определяется значениями курсовых углов волнения при $130^\circ < q_w < 250^\circ$ в круговой системе счета. Однако влияние волнения заметно только при его балльности выше 4. Возможно, что при рассмотрении танкеров с большим водоизмещением границы допустимой балльности будут расширены. Учитывая, что рабочий диапазон скоростей швартовки находится в пределах $1,5 \le \upsilon \le 4,0$ уз, и используя результаты моделирования швартовной операции в условиях волнения, можно сделать вывод, что ее выполнение в безопасном режиме возможно только при волнении не более 5 баллов. Это не значит, что выполнить швартовку при большей балльности волнения невозможно, однако такая швартовка будет сопряжена с определенными трудностями, например, такими, как высокая вероятность ухода танкера с траектории сближения, а также потеря управляемости на последнем этапе швартовки. Наглядно потеря управляемости на траектории сближения показана на рис. 4. Характерно, что в данном случае выбран наиболее благоприятный курс по отношению к направлению бега волн.

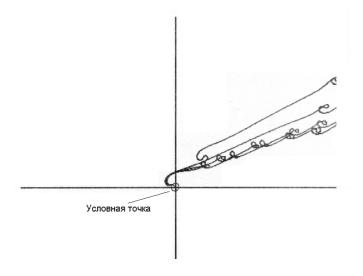


Рис. 4. Потеря устойчивости движения танкера при 6-балльном волнении ($\upsilon = 2$ м/с, $\upsilon_a = 22$ м/с, $\upsilon_{\rm T} = 0.5$ м/с, $q_a = q_w = 60^{\rm o}$ пр/б, $h_{3\%} = 4.9$ м)

5. Заключение

Анализ результатов моделирования процесса сближения танкера с УТ позволяет считать приемлемым использование кривой погони для осуществления выхода танкера в МПТ, т.к. при минимальных ограничениях условий безопасного выполнения швартовной операции её выполнение легко реализуется существующими средствами и методами управления танкером.

Литература

Березин С.Я., Тетюев Б.А. Системы автоматического управления движением судов по курсу. *Л., Судостроение*, 264 с., 1974.

Локк А.С. Управление снарядами. М., Физматгиз, 776 с., 1958.

Мартюк Г.И., Юдин Ю.И., Юдин А.Ю. Учет мелководья в математической модели судна с целью оценки его влияния на маневренные характеристики судна. *Вестник МГТУ*, т.7, № 3, с.390-398, 2004.

Справочник по теории корабля. В 3 т. Управляемость водоизмещающих судов. Гидродинамика судов с динамическими принципами поддержания. Под ред. Я.И. Войткунского. *Л., Судостроение*, т.3, 544 с., 1985.

Степахно Р.Г. Разработка способов идентификации математической модели судна с целью решения практических задач судовождения. *Автореф. дис. канд. техн. наук. Мурманск*, 21 с., 2005.