Преобразование полиномиальных моделей, построенных по экспериментальным данным

В.С. Солодов, А.В. Власов

Политехнический факультет МГТУ, кафедра автоматики и вычислительной техники

Аннотация. В работе рассматриваются проблемы, связанные с преобразованием полиномиальной модели объекта, полученной по экспериментальным данным. Продемонстрирована неэффективность преобразования решением квадратного уравнения. Показано применение итерационного метода для перестроения модели. Предложены программные средства для получения двух- и трехфакторных моделей, их анализа и преобразования.

Abstract. The paper considers the problems of transformation of the object polynomial models constructed with the help of experimental data. The inefficiency of transformation by a quadratic and the application of an iteration method have been shown. The software for two- and three-factor models, their analyses and transformation has been proposed.

1. Введение

Полиномиальные модели, полученные по экспериментальным данным, подлежат статистической обработке, заключающейся в сравнительном анализе результатов модельных расчетов и экспериментальных данных. Вопрос наличия или отсутствия того или иного коэффициента модели имеет случайный характер. Поэтому преобразование модели с целью нахождения управляющего параметра процесса путём решения квадратного уравнения часто становится некорректным. Выходом из этого положения может стать итерационный метод нахождения корней с помощью ЭВМ и построение преобразованной математической модели.

2. Постановка задачи

Характерной особенностью судового комплекса как объекта идентификации методами активного эксперимента, является наличие большого количества взаимосвязанных неуправляемых или плохо управляемых параметров, которые при натурных испытаниях рассматриваются как выходные параметры, и малого количества варьируемых параметров, отвечающих требованиям, предъявляемым к факторам и их совокупности (управляемость, некоррелированность, совместимость).

Например, для судового комплекса "судно – двигатель – движитель – траловая лебёдка – трал" наиболее полно всем этим требованиям отвечают следующие параметры:

- положение рукоятки управления шагом винта и главным двигателем, контролируемое датчиком выносного указателя шага винта (BYIII);
 - длина вытравленных ваеров L, контролируемая датчиком длины ваеров;
 - курсовой угол ветра q, контролируемый датчиком курса.

Параметры комплекса, которые являются функциями других исследуемых параметров, установка и удержание которых на заданных уровнях затруднены, рассматриваются в процессе испытаний как выходные.

К ним относятся: скорость судна V_s , суммарное тяговое усилие в ваерах 2T, мощность на гребном валу N_{cs} , глубина хода трала h.

Традиционно глубина хода трала h расматривается как функция от скорости буксировки трала и длины ваеров. Строится зависимость избыточной тяги судна (т.е. тяги, используемой для буксировки трала) от скорости судна и мощности на гребном валу. Скорость буксировки трала и мощность на гребном валу не могут независимо друг от друга изменяться, устанавливаться и поддерживаться на заданном уровне, так как являются взаимосвязанными параметрами.

В то же время основной задачей промысловых натурных испытаний комплекса является построение математических моделей с целью управления им. Следовательно, полином, полученный в процессе эксперимента, должен быть преобразован в функцию от управляющего параметра.

Например, в процессе испытаний был получен полином h = f(L, BYIII). Требуется найти зависимость длины ваеров L от глубины хода трала h при неизменном положении BYIII, то есть $L = f_1(h, BYIII)$.

Таким образом, варьируемый в процессе испытаний параметр является управляющим воздействием на судовой комплекс. Следовательно, необходимо, чтобы эти управляющие воздействия были выражены в явном виде в математических моделях комплекса. В этом смысле испытание и управление комплексом образуют дуальный процесс, в котором управляющие воздействия одновременно служат для изучения управляемого объекта и для приведения его к требуемому состоянию. Все эти особенности потребовали исследовать возможность преобразования полиномиальных моделей, полученных непосредственно в результате проведения испытаний, в полиномиальные модели, удобные для практического использования (Шишло, 1975).

3. Методы решения

Рассмотрим преобразование полиномов для случаев двух- и трехфакторных моделей. Пусть в результате проведения эксперимента был получен полный квадратичный полином вида

$$Y = b_0 + \sum_{i=1}^{k} b_i x_i + \sum_{i=1}^{k} b_{ii} x_i^2 + \sum_{i \neq j} b_{ij} x_i x_j,$$
 (1)

адекватно отражающий результаты проведения испытаний, где:

 x_i – варьируемые в процессе эксперимента параметры в относительных (кодированных) величинах;

Y – один из выходных (регистрируемых в процессе испытаний) параметров.

Требуется найти зависимость одного из управляющих воздействий x_i от выходного параметра Y и k-1 варьируемых параметров.

$$x_i = f(Y, x_i); j = 1, 2...k; i \neq j.$$
 (2)

Наличие эффектов взаимодействия $(b_{ii} \neq 0)$ и квадратичных эффектов $(b_{ii} \neq 0)$ не позволяет разрешить уравнение (1) относительно какого-либо управляющего воздействия.

Предлагается для нахождения зависимости типа (2) варьировать величины Y и x_j на нескольких уровнях, предусмотренных планом эксперимента, и таким образом производить сечение факторного пространства плоскостями Y = 0; $Y = \pm 1$; $x_j = 0$; $x_j = \pm 1$.

Для этого в уравнении (1) в соответствии с планом эксперимента вместо x_i подставляется 0 или ± 1 , приведением подобных членов вычисляются новые коэффициенты b_{iu} , и уравнение (1) приводится к виду:

$$b_{ii}x_i^2 + b'_{iu}x_j + b'_{ou} - Y = 0$$

и вычисляются корни квадратного уравнения по формуле

$$X_{iu} = -\frac{b'_{iu}}{2b_{ii}} \pm \sqrt{\frac{1}{b_{ii}}} \left\{ Y_{u} - \left[b'_{ou} - \frac{(b'_{iu})^{2}}{4b_{ii}} \right] \right\}$$
 (3)

для различных уровней У, предусмотренных планом эксперимента.

В уравнении (3) x_{iu} — кодированное значение искомого управляющего воздействия при u-том сочетании уровней x_j и Y.

При k = 2

$$x_i = f(Y,x_j); j = 1,2; i \neq j;
 b'_{ou} = b_0 + b_j x_{ju} + b_{jj} x_{ju}^2;
 b'_{iu} = b_i + b_{ij} x_{ju}.$$
(4)

При k = 3

$$x_{i} = f(Y,x_{j},x_{m}); j = 1,2,3; i \neq j \neq m;$$

$$b'_{ou} = b_{0} + b_{j}x_{ju} + b_{jj}x_{ju}^{2} + b_{m}x_{mu} + b_{mm}x_{mu}^{2} + b_{jm}x_{ju}x_{mu};$$

$$b'_{iu} = b_{i} + b_{ij}x_{ju} + b_{im}x_{mu}.$$
(5)

Варьировать параметры x_j , x_m , Y можно по одному из планов эксперимента. Например, при k=2 наиболее удобен с точки зрения простоты вычислений коэффициентов полинома ортогональный центральный композиционный план (ОЦКП) второго порядка (Ивботенко и др., 1975). При k=3 – план Бокса-Бенкина. Согласно этим планам, параметры варьируются на трёх равноотстоящих уровнях, матрица планирования целочисленная. Коэффициенты модели рассчитываются по известным формулам для ОЦКП, заменив x_n на Y_n .

При преобразовании полинома необходимо, чтобы корни уравнения (3) были вещественными. Следовательно, необходимо выполнение условий:

$$Y_u > b'_{ou} - (b'_{iu})^2/(4b_{ii})$$
 при $b_{ii} > 0$; $Y_u < b'_{ou} - (b'_{iu})^2/(4b_{ii})$ при $b_{ii} < 0$.

Это обеспечивается выбором диапазона варьирования *Y*. Из двух вещественных корней уравнения (3) выбирается минимальный по абсолютной величине корень.

При преобразовании полиномиальных моделей наиболее характерны следующие частные случаи:

- в исходном полиноме (1) отсутствует квадратичный эффект фактора x_i ($b_{ii} = 0$). В этом случае значение x_i в u-том опыте определяется как $x_{iu} = (Y_u b'_{ou})/b'_{iu}$;
- в полиноме (1) квадратичный эффект на порядок меньше, чем коэффициент $b_{iu}^{'}$. Тогда небольшая ошибка в вычислении b_{ii} может привести к значительной ошибке определения корней x_{iu} по формуле (4). В этом случае рекомендуется использовать итерационный метод вычисления корней по формуле:

$$X_{iun} = (Y_u - b'_{ou})/(b'_{iu} + b_{ii}x_{iu \, n-1}).$$

Итерация проводится следующим образом. Полагая в знаменателе $x_{iu}=0$, определяют первое приближение x_{iu1} . Подставляя найденное значение x_{iu1} в знаменатель выражения (5), находят второе приближение для значения x_{iu2} . Эта операция продолжается до тех пор, пока итерация не сойдётся, то есть $|x_{iun}-x_{iu}| \le \varepsilon$, где n – номер приближения, ε – заданная ошибка приближения.

4. Программная реализация

Авторами были созданы программные продукты, предназначенные для обработки результатов двухфакторных и трехфакторных экспериментов. Все программы написаны в среде Borland Delphi 5.0 и предназначены для работы в ОС Windows 9х и Windows XP. Во всех программах предусмотрено сохранение результатов и вывод их на печать.

Первая из программ (BoxBenkin3F) предназначена для расчета коэффициентов и регрессионного анализа трехфакторной полиномиальной модели по методу планирования активного эксперимента, реализованного в соответствии с планом Бокса-Бенкина. Программа обеспечивает построение построение расчетной матрицы, расчет коэффициентов трехфакторной модели и проведение регрессионного анализа с проверкой адекватности модели (по критерию Фишера), а также вычисление невязки между данными эксперимента и полученными при использовании модели результатами.

Отличительной особенностью программы BoxBenkin3F является гибкий алгоритм удаления незначащих коэффициентов из модели, реализованный в виде развернутого диалога с необходимыми комментариями, помогающими пользователю принять решение о значимости коэффициента. Программа обеспечивает наглядное представление результатов расчетов на каждом из этапов вычислений. Объем программы — 32 килобайта исходного кода.

Следующие три программных продукта предназначены для работы с результатами двухфакторного эксперимента и ориентированы на совместное использование (что, впрочем, не исключает и раздельный вариант работы).

Программа ОССР2F ориентирована на расчет коэффициентов двухфакторной модели по результатам активного эксперимента, реализованного по ортогональному центральному композиционному плану (ОЦКП). Ее основными функциями являются: расчет коэффициентов модели; вычисление невязки между данными эксперимента и полученными при использовании модели результатами; сохранение данных в формате, совместимом с остальными двумя; вывод результатов на печать.

Так же, как и в BoxBenkin3F, в ОССР2F реализовано вычисление невязки между данными эксперимента и результатами расчетов модули по плану эксперимента. В программе имеются органы управления для переключения на программы построения графиков и пересчета модули, о которых пойдет речь ниже. Объем программы составляет 7,5 килобайт исходного кода.

Программа построения графиков по двухфакторной полиномиальной модели (Grapher2F) служит для построения кривых для модели вида $Y = f(X_1, X_2)$ итерационным методом с задаваемой пользователем точностью, что обеспечивает хорошую скорость сходимости. Максимальное количество кривых -10.

Если программа построения графиков была запущена из OCCP2F, то рассчитанная модель будет автоматически подставлена в соответствующие позиции ввода в Grapher2F, что значительно ускоряет и упрощает работу пользователя с программными продуктами. Объем программного кода – 9,2 килобайт.

Последним продуктом является программа перестроения модели вида $Y = f(X_1, X_2)$ в $X_1 = f(X_2, Y)$ и $X_2 = f(X_1, Y)$, получившая название МС2F. Перестроение модели основано на том же итерационном методе, что использовался в Grapher2F. Фактически, по ОЦКП вычисляются результаты "виртуального" эксперимента (виртуального потому, что результаты всех "опытов" рассчитываются итерационным методом в программе), дальше выполняется та же последовательность действий, что и в программе расчета коэффициентов двухфакторной модели — вплоть до вычисления невязки по результатам расчета моделей и данным "эксперимента". Объем программы — 14,5 килобайт.

5. Заключение

Полученная эмпирическим путём модель процесса является не абсолютно точным его описанием, а приближенным выражением неизвестного закона. Процесс преобразования полиномиальной модели требует использования итерационного метода нахождения корней квадратичного полинома, что является весьма трудоёмким процессом. Использование разработанных программ существенно облегчает труд исследователя и открывает новые возможности.

Литература

Ивоботенко Б.А., Ильинский Н.Ф., Копылов И.П. Планирование эксперимента в электромеханике. *М.*, Энергия, 184 с., 1975.

Шишло Ю.В. Тактика пелагического тралового лова. *Мурманск, Мурманское книжное издательство*, 104 с., 1975.