УДК 622.7:519.711.2

С.А. Козырев, В.Ф. Скороходов, Р.М. Никитин, П.В. Амосов, В.В. Массан

Оценка аэрологической обстановки на открытых горных работах на основе трехмерных моделей карьеров

S.A. Kozyrev, V.F. Skorokhodov, R.M. Nikitin, P.V. Amosov, V.V. Massan

Assessment of aerological setting in open mining based on 3D open-pit model

Аннотация. С использованием 3D компьютерного моделирования в программном комплексе ANSYS Fluent исследован характер распределения воздушных потоков на поверхности и в карьерном пространстве глубоких карьеров с учетом реального рельефа местности и масштаба карьера. Это исследование позволило выявить влияние породных отвалов и прибортовых зон карьера на формирование рециркуляционных зон, вихревых течений и степени ослабления воздушных потоков в различных зонах карьера в зависимости от скорости ветра на поверхности.

Abstract. 3D modeling in ANSYS Fluent software has been used to research air flows distribution character on surface and in deep open-pit space with taking into account actual local relief and open-pit scale. This has allowed revealing influence of rock dumps and near-wall pit zones on generation of recirculated zones and turbulent flows, and extent of air flows weakening in different open-pit zones depending on wind velocity on surface.

Ключевые слова: компьютерное моделирование, аэродинамические условия, глубокий карьер, распределение воздушных масс, CFD-метол

Key words: computer simulation, aerodynamic conditions, deep pit, distribution of air masses, CFD method

1. Введение

Особенности климатических и горно-геологических условий Кольского полуострова способствуют ослаблению естественного воздухообмена в карьерном пространстве и соответственно усложняют создание нормальных санитарно-гигиенических условий труда. Создание отвалов вблизи карьеров, низкие температуры воздуха и длительное отсутствие солнечной радиации приводят к длительным периодам температурной инверсии и значительно ослабляют воздушные потоки на дне карьера. В связи с углублением карьеров эти процессы проявляются еще в большей степени. В настоящее время остается открытым вопрос, до каких пределов происходит снижение воздушных потоков на дне карьера и как происходит их циркуляция в карьерном пространстве. Поэтому информация о характере воздушных течений и составе атмосферы в карьере является необходимой при планировании горных работ.

В последние годы данная проблема в Горном институте КНЦ РАН изучалась с применением программы COMSOL Multiphysics на основе численного решения общеизвестных уравнений Навье-Стокса для несжимаемой жидкости. Был проведен ряд работ, которые позволили получить 2D информацию о характере воздушных течений на верхних и глубинных горизонтах карьера, выявить закономерности распределения воздушных масс внутри карьера с учетом климатических особенностей территории (Козырев, Амосов, 2012; 2014). Но 2D моделирование дает информацию только в одном из сечений карьера и не позволяет отразить влияние как рельефа поверхности, так и прибортовых зон карьера на характер распределения воздушных потоков в карьерном пространстве.

Данная работа является пилотным этапом 3D моделирования аэродинамических условий карьера рудника "Железный" Ковдорского ГОКа с использованием программного комплекса ANSYS Fluent.

В ходе выполнения работы авторами решались следующие задачи: создание виртуального геометрического образа самого карьера на основе базы данных текущей геодезической съемки; постановка расчетной задачи в условиях однозначности, отвечающих среднегодовым значениям метеонаблюдений; учет влияния рельефа местности на распределение воздушных потоков внутри карьера и прилегающей территории.

2. Методология численного моделирования

Первоначально был создан геометрический образ карьера и рельефа прилегающей территории.

Геометрический образ карьера и рельефа прилегающей территории выполнен в сеточном генераторе Gambit (рис. 1). Расчетная сетка модели поверхностей содержит 17 000 узловых точек

и охватывает горизонтальную проекцию карьера и прилегающей территории площадью $8,5 \text{ км}^2$, соответственно в осях "Север – Юг" – 3,4 км и "Восток – 3апад" – 2,5 км.

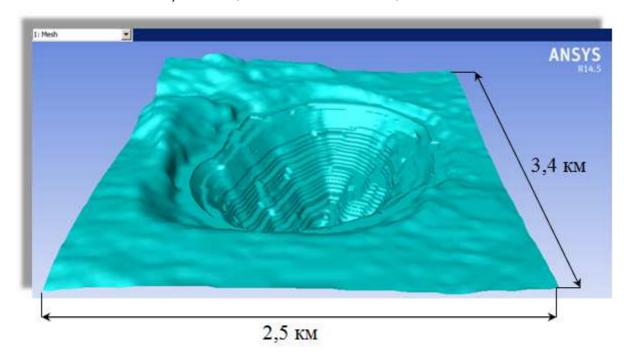


Рис. 1. Геометрический образ карьера и рельефа прилегающей территории

Расчетная область модели (рис. 2) представляет собой трехмерную прямоугольную область высотой 750 м от верхнего горизонта карьера.

Конечно-элементная расчетная сетка модели состоит из тетрагональных элементов (Tet/Hybrid, Type: TGrid), соответственно, для области карьера с размерами ребра $28,4\,\mathrm{m}$, для области надкарьерного пространства $-42,6\,\mathrm{m}$. Общая емкость сетки составила $734\,811$ элементов.

Задача решалась в стационарном режиме с использованием стандартной (k- ϵ)-модели турбулентности. Для решения использовался компьютер с характеристиками 2.93 GHz, 8.00 ГБ и программным обеспечением Windows 7(max), 64-OC.

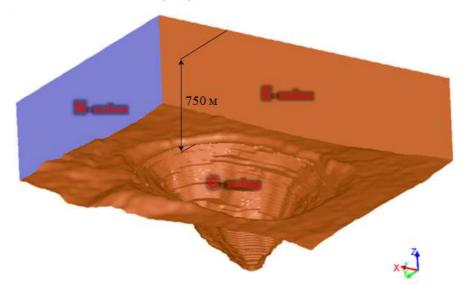


Рис. 2. Расчетная область модели

3. Оценка структуры воздушных потоков в карьерном пространстве

По результатам 3D компьютерного моделирования получена визуальная и количественная информация о распределении воздушных потоков во всем моделируемом пространстве, включая приповерхностные слои карьера и прилегающей территории.

На рис. 3 представлены поля градиента скорости воздушных потоков при заданном направлении и скорости ветра по срезам моделируемого пространства, что показывает принципиальную возможность оценки скорости воздушных потоков в любой точке модели и любом из сечений карьера.

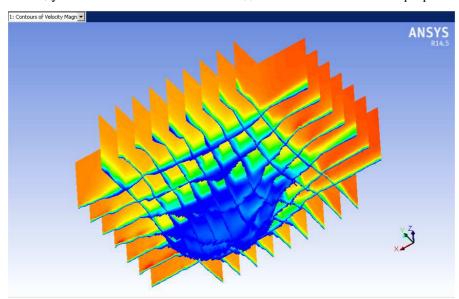


Рис. 3. Поля градиента скорости воздушных потоков

Визуализация параметров воздушных потоков в исследуемой области позволяет оценить изменение кинетической энергии ветра в карьерном пространстве, что способствует формированию вихревых течений (рис. 4).

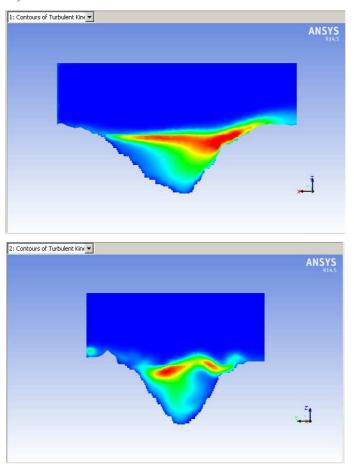


Рис. 4. Визуализация характера турбулентности для двух перпендикулярных центральных срезов моделируемой области

По результатам моделирования выявлено, что в карьерном пространстве при естественном проветривании образуются два вихря: крупный, занимающий центральную часть карьера; мелкий, противоположного направления вблизи дна карьера, что приводит к образованию застойных зон и невозможности выноса вредных примесей из рабочих зон карьера (рис. 5).

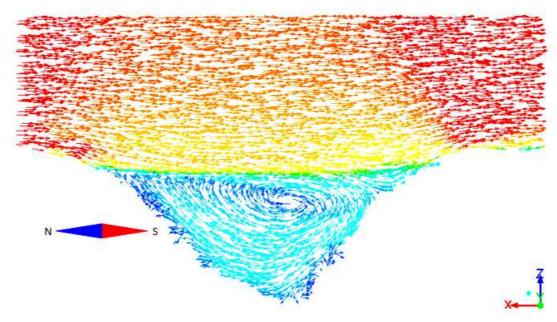


Рис. 5. Характер распределения воздушного потока для центрального сечения карьера при южном направлении ветра

Результаты моделирования ветрового потока в карьере в объемной постановке представлены на рис. 6.

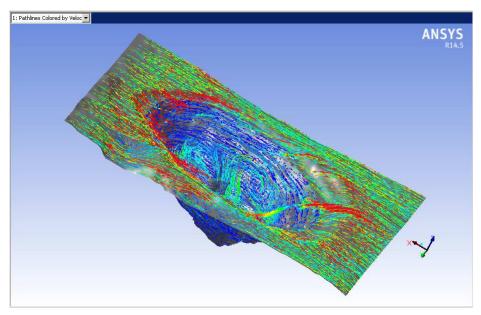


Рис. 6. Линии тока ветра в карьере, в приповерхностных областях карьера и прилегающей территории

По результатам моделирования выявлено, что, в отличие от 2D моделирования, наличие породных отвалов и особенностей рельефа приводит к изменению направления огибающего карьер потока воздуха с его подсосом в боковых частях в карьерное пространство (рис. 6), что приводит, в зависимости от угла наклона борта карьера, к уменьшению угла раскрытия воздушной струи, увеличению размера рециркуляционной зоны и образованию вихревых зон вблизи поверхностной зоны карьера (рис. 5). Данный характер распределения воздушных потоков приводит к еще большему их ослаблению в различных зонах карьера в зависимости от скорости ветра на поверхности.

4. Выволы

С использованием 3D компьютерного моделирования в программном комплексе ANSYS Fluent исследован характер распределения воздушных потоков на поверхности и в карьерном пространстве глубоких карьеров с учетом реального рельефа местности и масштаба карьера, что позволило выявить влияние породных отвалов и прибортовых зон карьера на формирование рециркуляционных зон, вихревых течений и степени ослабления воздушных потоков в различных зонах карьера в зависимости от скорости ветра на поверхности.

Литература

- **Козырев С.А., Амосов П.В.** Моделирование аэродинамических процессов в глубоких карьерах // Сб. докладов Всерос. науч.-техн. конф. с междун. участием "Глубокие карьеры", 18-22 июня 2012 г., г. Апатиты, ГоИ КНЦ РАН. Апатиты, СПб., 2012. С. 470-474.
- **Козырев С.А., Амосов П.В.** Моделирование распределения воздушных потоков в глубоких карьерах. Горный журнал. 2014. № 5. С. 7-11.
- **Козырев С.А., Амосов П.В.** Применение СFD-моделей при решении задач рудничной аэрологии. Горный информационно-аналитический бюллетень. 2014. № 8. С. 204-211.
- **Козырев С.А., Амосов П.В.** Пути нормализации атмосферы глубоких карьеров. Вестник МГТУ. 2014. Т. 17, № 2. С. 231-237.

References

- **Kozyrev S.A., Amosov P.V.** Modelirovanie aerodinamicheskih protsessov v glubokih karerah [Modelling of aerodynamic processes in deep pits] // Sb. dokladov Vseros. nauch.-tehn. konf. s mezhdun. uchastiem "Glubokie kareryi", 18-22 iyunya 2012 g., g. Apatityi, GoI KNTs RAN. Apatityi, SPb., 2012. P. 470-474.
- **Kozyrev S.A., Amosov P.V.** Modelirovanie raspredeleniya vozdushnyih potokov v glubokih karerah [Simulation of air distribution in deep pits]. Gornyiy zhurnal. 2014. N 5. P. 7-11.
- **Kozyrev S.A., Amosov P.V.** Primenenie CFD-modeley pri reshenii zadach rudnichnoy aerologii [Application of CFD models in solution of problems of mine aerology]. Gornyiy informatsionno-analiticheskiy byulleten. 2014. N 8. P. 204-211.
- **Kozyrev S.A., Amosov P.V.** Puti normalizatsii atmosferyi glubokih karerov [The normalization of the atmosphere of deep pits]. Vestnik MGTU. 2014. T. 17, N 2. P. 231-237.

Информация об авторах

Козырев Сергей Александрович — Горный институт КНЦ РАН, зав. лабораторией, д-р техн. наук, e-mail: skozyrev@goi.kolasc.net.ru

Kozyrev S.A. – Mining Institute KSC RAS, Head of Laboratory, Dr of Tech. Sci., e-mail: skozyrev@goi.kolasc.net.ru

Скороходов Владимир Федорович — Горный институт КНЦ РАН, зав. лабораторией, д-р техн. наук, e-mail: skorohodov@goi.kolasc.net.ru

Skorokhodov V.F. – Mining Institute KSC RAS, Head of Laboratory,

Dr of Tech. Sci., e-mail: skorohodov@goi.kolasc.net.ru

Никитин Роман Михайлович – Горный институт КНЦ РАН, науч. coтрудник, e-mail: remnik@yandex.ru

Nikitin R.M. – Mining Institute KSC RAS, Scientific Researcher, e-mail: remnik@yandex.ru

Амосов Павел Васильевич – Горный институт КНЦ РАН, канд. техн. наук, ст. науч. сотрудник, e-mail: vosoma@goi.kolasc.net.ru

 $\label{eq:mosov} \textbf{P.V.} - \textbf{Mining Institute KSC RAS, Cand. of Tech. Sci., Senior Researcher, e-mail: } \\ \textbf{vosoma@goi.kolasc.net.ru}$

Массан Владимир Васильевич – Горный институт КНЦ РАН, инженер, e-mail: masjanja_gd@mail.ru

Massan V.V. – Mining Institute KSC RAS, Engineer, e-mail: masjanja gd@mail.ru