УДК 621.1

С. С. Глушков, С. П. Глушков, И. А. Круглов, А. А. Иванов

Совершенствование методологии измерения крутильных колебаний

S. S. Glushkov, S. P. Glushkov, I. A. Kruglov, A. A. Ivanov

Improving the methodology of torsional vibrations' measurement

Аннотация. Проведен теоретический анализ метода измерений параметров крутильных колебаний судовых энергетических установок, установлена возможность влияния режима испытаний на результаты измерений. Сформулированы рекомендации относительно режимов испытаний судовых энергетических установок.

Abstract. The theoretical analysis of the measurement method of parameters of ship power plants' torsional vibrations has been carried out; the possibility of impact of the testing regime on the measurement results has been established. Some recommendations regarding the test modes of ship power plants have been given.

Ключевые слова: крутильные колебания, судовой валопровод, частота вращения, быстрое преобразование Фурье. **Key words:** torsional vibration, marine shaft, rotational speed, fast Fourier transform.

Ввеление

При проектировании и модернизации судовых энергетических установок необходимо проведение измерений параметров крутильных колебаний. Методы и режимы испытаний регламентированы источниками [1]—[3]. Испытания проводятся как на фиксированных режимах, так и с равномерным изменением частоты вращения вала. Целью работы является проверка методологии измерения параметров крутильных колебаний и оценка возможности влияния режимов испытаний на результаты измерений. Задачи исследования: 1) измерить время ускорения коленчатого вала в диапазоне частот вращения от 900 до 1000 мин⁻¹; 2) построить графики функций колебательного процесса, теоретических прямых, характеризующих изменение частоты вращения, а также суммарных графиков двух функций; 3) определить амплитудночастотные характеристики исходных и суммарных сигналов; 4) сравнить амплитуды исходного и суммарного сигналов; 5) проанализировать методологию на основе математического моделирования собственных частот крутильных колебаний валопроводов [4].

Материалы и методы

В целях определения времени ускорения изменялась частота вращения коленчатого вала от 900 до $1\,000$ мин $^{-1}$ с фиксацией результата с помощью секундомера.

Для оценки влияния режима испытаний на результаты измерений задана функция изменения частоты вращения коленчатого вала на некотором ограниченном промежутке времени t и периодическая составляющая крутильных колебаний. Известно, что при крутильных колебаниях происходит периодическое изменение амплитуды A, а увеличение частоты вращения n будет характеризоваться уравнением:

$$\varphi(\omega_{\rm B}) = A\sin(\omega_{\rm B}) + nt. \tag{1}$$

При фиксированной частоте вращения n=0 уравнение (1) сводится к исследованию типичного колебательного процесса:

$$\varphi(\omega_{\rm B}) = A\sin(\omega_{\rm B}). \tag{2}$$

В соответствии с выражением (2) построены графики функции $\phi(\omega_{\text{в}})$ с варьированием частоты $\omega_{\text{в}}$, при постоянных значениях амплитуды и времени.

Изменение частоты вращения на указанном диапазоне можно задать теоретической прямой A(t) = kt, произвольного наклона. На практике наклон прямой различен, коэффициент k зависит от нагрузки на двигатель и подачи топлива в некоторый момент времени t. Таким образом, к исходной функции (2) добавляется функция A(t) = kt. Производится суммирование численных значений исходного сигнала на установившемся режиме, с численными значениями теоретической прямой, характеризующей изменение частоты вращения.

Амплитудно-частотные характеристики исходных и суммарных сигналов определяются на основе алгоритма быстрого преобразования Фурье [5].

Результаты и обсуждение

Результаты измерений времени выбега коленчатого вала для судовых энергетических установок различных проектов представлены в табл. 1.

Таблица 1 Время выбега коленчатого вала

Название	Номер	Марка	Номер	Время	Среднее
судна	проекта	двигателя	измерения	ускорения, с	время, с
			1	3,95	
PT-318	911B	B6190	2	4,10	3,98
			3	3,90	
		1	4,05		
PT-194	911Б	R6160	2	4,12	4,13
			3	4,22	
			1	4,13	
"Сорск"	P14A	X6170	2	4,17	4,18
			3	4,24	
			1	3,92	
CK-2071	СК-200К	X8170	2	3,97	4,02
			3	4,18	
Среднее время					4,07

Для построения графиков исходных и суммарных сигналов в масштабе "амплитуда — время" было определено среднее время выбега коленчатого вала $t_{\rm cp} = 4{,}07~{\rm c}.$

На основании суммирования исходных функций (2) и теоретических прямых A(t) = kt были построены графики суммарных сигналов (рис. 1–6).

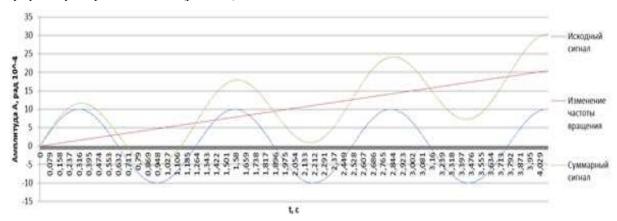


Рис. 1. Сигнал с частотой 0,73 Гц при постоянной частоте вращения и плавном увеличении частоты вращения

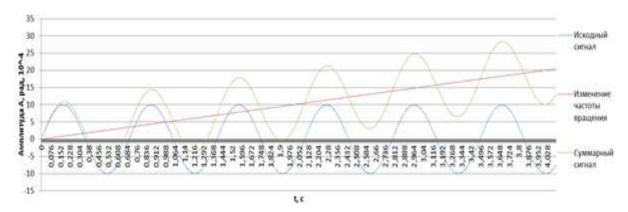


Рис. 2. Сигнал с частотой 1,46 Гц при постоянной частоте вращения и плавном увеличении частоты вращения

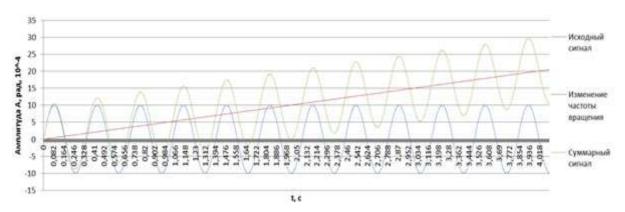


Рис. 3. Сигнал с частотой 2,92 Гц при постоянной частоте вращения и плавном увеличении частоты вращения

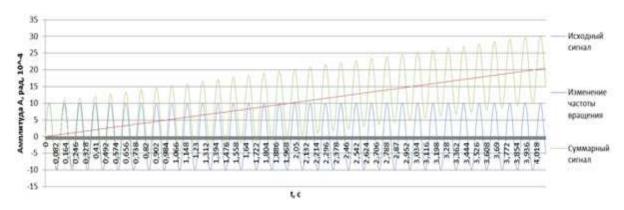


Рис. 4. Сигнал с частотой 8,06 Гц при постоянной частоте вращения и плавном увеличении частоты вращения

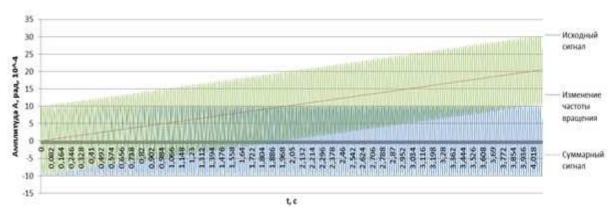


Рис. 5. Сигнал с частотой 23,92 Гц при постоянной частоте вращения и плавном увеличении частоты вращения

Спектральный анализ выполнен на основе алгоритма быстрого преобразования Фурье (БП Φ). Получены амплитудно-частотные характеристики (рис. 6-10).

Сравнение результатов БПФ исходного и суммарного сигнала представлены в табл. 2.

Таблица 2 Значения исходного и суммарного сигналов

№	Частота, Гц	Амплитуда исходного сигнала $A \times 10^{-4}$ рад	Амплитуда суммарного сигнала $A \times 10^{-4}$ рад	
1	0,73	8,95	7,705	
2	1,46	9,78	8,80	
3	2,92	8,86	8,51	
4	8,06	7,47	7,42	
5	23,92	9,25	9,20	

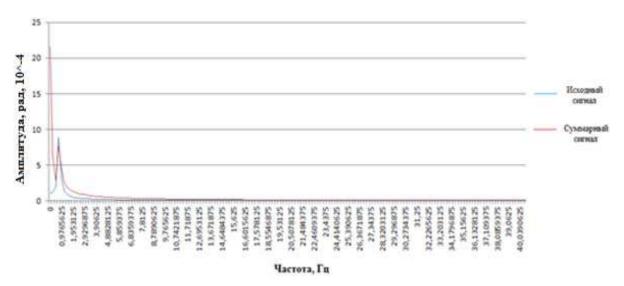


Рис. 6. Результаты БПФ для сигнала с частотой 0,73 Гц

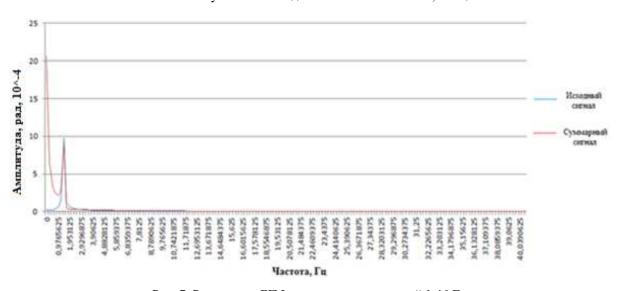


Рис. 7. Результаты БПФ для сигнала с частотой 1,46 Гц

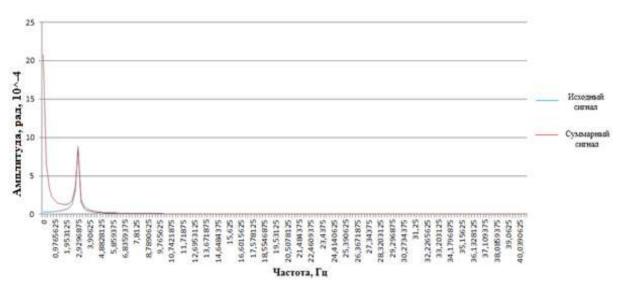


Рис. 8. Результаты БПФ для сигнала с частотой 2,92 Гц

Глушков С. С. и др. Совершенствование методологии измерения...

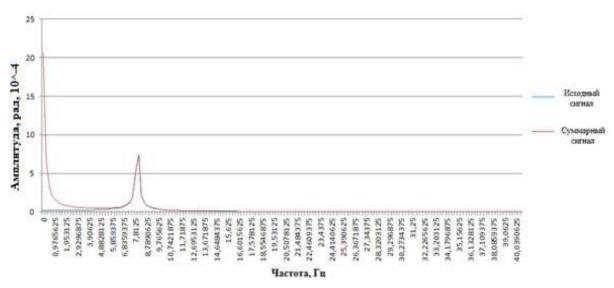


Рис. 9. Результаты БПФ для сигнала с частотой 8,06 Гц

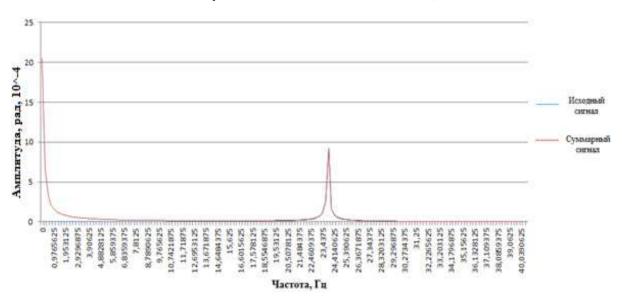


Рис. 10. Результаты БПФ для сигнала с частотой 23,92 Гц

На основании суммирования исходных сигналов, соответствующих собственным частотам, и теоретических прямых A(t) = kt были построены графики суммарных сигналов (рис. 11-13).

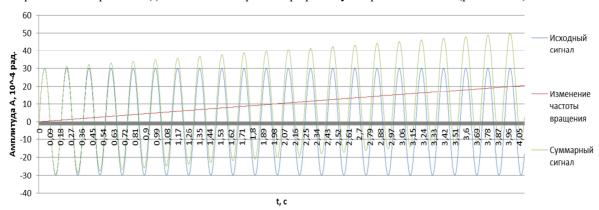


Рис. 11. Сигнал с собственной частотой 5,36 Гц (Г70-5) и плавным увеличением частоты вращения

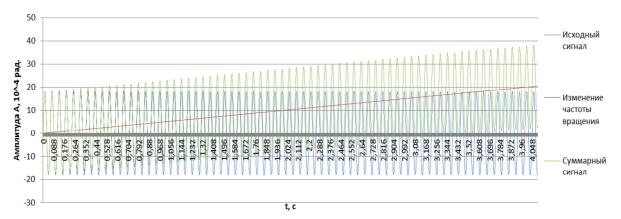


Рис. 12. Сигнал с собственной частотой 16,18 Гц (0219Д) и плавным увеличением частоты вращения

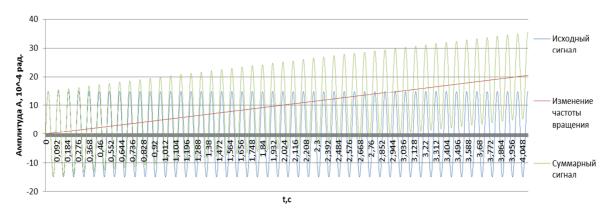


Рис. 13. Сигнал с собственной частотой 11,41 Гц (Cummins 6BTA) и плавным увеличением частоты вращения

После спектрального анализа получены амплитудно-частотные характеристики (рис. 14-16).

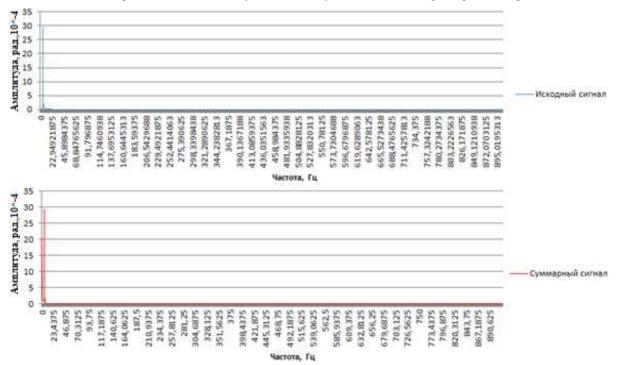


Рис. 14. Результаты БПФ для сигнала с частотой 5,36 Гц (Г70-5)

Глушков С. С. и др. Совершенствование методологии измерения...



Рис. 15. Результаты БПФ для сигнала с частотой 16,18 Гц (0219Д)

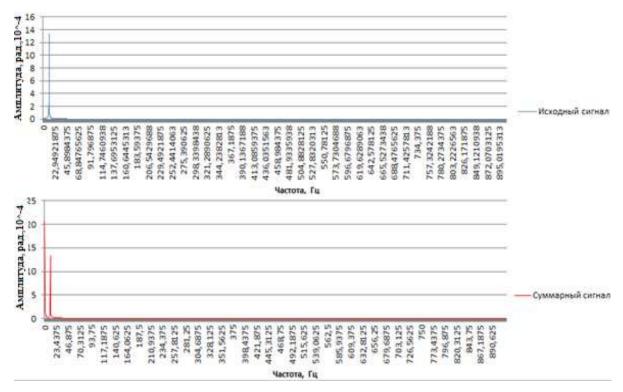


Рис. 16. Результаты БПФ для сигнала с частотой 11,41 Гц (Cummins 6BTA)

В составе судовых энергетических установок наибольшее распространение получили четырехтактные 6-цилиндровые дизельные двигатели. В целях анализа методологии с плавным изменением частоты вращения построим графики исходных сигналов, используя собственные частоты одноузловой формы колебаний валопроводов с 6-цилиндровыми двигателями Г70-5, Cummins 6ВТА, 0219Д [3]. Значения собственных частот представлены в табл. 3.

Таблица 3

Собственные частоты колебаний

Γ 70-5 (735 кВт, 350 мин $^{-1}$)	0219Д (415 кВт, 1 000 мин ⁻¹)	Cummins 6BTA (168 кВт, 2 500 мин ⁻¹)	
5,36 Гц	16,18 Гц	11,41 Гц	

Сравнение результатов БПФ исходного и суммарного сигнала представлены в табл. 4.

Таблина 4

Значения исходного и суммарного сигналов

Двигатель, частота	Амплитуда исходного сигнала $A \times 10^{-4}$ рад	Амплитуда суммарного сигнала $A \times 10^{-4}$ рад	
Γ 70-5, N = 5,36 Γ ц	29,59	29,31	
0219Д, N = 16,18 Гц	16,85	16,78	
Cummins 6BTA, <i>N</i> = 11,41 Гц	13,35	13,25	

Результаты, представленные в табл. 2 и табл. 4, свидетельствуют о том, что значения амплитуд после обработки суммарного сигнала меньше исходного. Амплитуды также не имеют закономерности возрастания или убывания в зависимости от частоты колебаний. Таким образом, метод измерения параметров крутильных колебаний с плавным изменением частоты вращения не дает достоверного результата.

Проведенный теоретический анализ позволяет сформулировать основные положения:

- при измерениях вносятся искажения в исходный сигнал в результате появления новой функции A(t) = kt, связанной с изменением частоты вращения;
- уравнение прямой A(t) = kt имеет различный наклон в зависимости от скорости перемещения рукоятки регулятора ТНВД;
- угол наклона прямой A(t) = kt не постоянен для одного и того же двигателя при различной частоте вращения и зависит от нагрузки на двигателе;
- нет определенной зависимости по изменению амплитуды в зависимости от частоты колебаний, поэтому невозможно прогнозировать ошибку;
 - амплитуда суммарного сигнала меньше исходного, т. е. результат измерения будет заниженным;
- не представляется возможным достоверно повторить измерения, так как плавность изменения частоты вращения будет зависеть от усилия на регуляторе подачи топлива от ТНВД.

Заключение

На основании проведенного исследования можно сформулировать следующие выводы:

- 1. Для обеспечения достоверности и единства измерений требуется формулировать заключения о напряжениях от крутильных колебаний только при измерении параметров на фиксированных частотах вращения коленчатого вала двигателя.
- 2. Измерения параметров крутильных колебаний при плавном изменении частоты вращения могут проводиться только для определения местоположения резонанса.
- 3. Требуется изменение нормативной базы классификационных обществ и государственных стандартов в части методологии измерения параметров крутильных колебаний.

Библиографический список

- 1. ГОСТ 26046-83. Установки судовые. Общие требования к испытаниям на крутильные колебания. М., 1983, 16 с.
- 2. НД 2-030101-009. Приложения к руководству по техническому наблюдению за судами в эксплуатации. М.: Российский морской регистр судоходства, 2013.
- 3. Р.009-2004. Руководство. Расчет и измерение крутильных колебаний валопроводов и агрегатов. М.: Российский речной регистр, 2005.
- 4. Глушков С. С. Математическое моделирование динамических характеристик судовых валопроводов : дис. ... канд. техн. наук. Новосибирск, 2009. 165 с.
 - 5. Лайонс Р. Цифровая обработка сигналов: пер. с англ. 2-е изд. М.: Бинон-Пресс, 2011. 656 с.

References

- 1. GOST 26046-83. Ustanovki sudovyie. Obschie trebovaniya k ispyitaniyam na krutilnyie kolebaniya [Ship units. General requirements for tests for torsional vibrations]. M., 1983. 16 p.
- 2. ND 2-030101-009. Prilozheniya k rukovodstvu po tehnicheskomu nablyudeniyu za sudami v ekspluatatsii [Annexes to the guidelines on technical supervision of ships in service]. M.: Rossiyskiy morskoy registr sudohodstva, 2013.
- 3. R.009-2004. Rukovodstvo. Raschet i izmerenie krutilnyh kolebaniy valoprovodov i agregatov [Manual. The calculation and measurement of torsional vibrations of marine shafts and units]. M.: Rossiyskiy rechnoy registr, 2005.
- 4. Glushkov S. S. Matematicheskoe modelirovanie dinamicheskih harakteristik sudovyh valoprovodov [Mathematical modeling of the dynamic behavior of ship shafts] : dis. ... kand. tehn. nauk. Novosibirsk, 2009. 165 p.
- 5. Layons R. Tsifrovaya obrabotka signalov [Digital signal processing] : per. s angl. 2-e izd. M. : Binon-Press, 2011. 656 p.

Сведения об авторах

Глушков Сергей Сергевич – OOO "Мидель", канд. техн. наук, директор; e-mail: direct@midel.me

Glushkov S. S. - LLC "Midel", Cand. of Tech. Sci., Director; e-mail: direct@midel.me

Глушков Сергей Павлович — Φ ГБОУ ВПО "Сибирский государственный университет путей сообщения", кафедра технологии транспортного машиностроения и эксплуатации машин, д-р техн. наук, профессор; e-mail: rcpl@mail.ru

Glushkov S. P. – FSEI HPE "Siberian State University of Railway Engineering", Department of Technology and Operation of Transport Engineering Machinery, Dr of Tech. Sci., Professor; e-mail: rcpl@mail.ru

Круглов Игорь Алексеевич — Φ ГБОУ ВПО "Сибирский государственный университет путей сообщения", кафедра технологии транспортного машиностроения и эксплуатации машин, аспирант; e-mail: expert@midel.me

Kruglov I. A. – FSEI HPE "Siberian State University of Railway Engineering", Department of Technology and Operation of Transport Engineering Machinery, Ph.D. Student; e-mail: expert@midel.me

Иванов А. А. – ФГБОУ ВПО "Сибирский государственный университет путей сообщения", кафедра технологии транспортного машиностроения и эксплуатации машин, аспирант; e-mail: expert@midel.me

Ivanov A. A. – FSEI HPE "Siberian State University of Railway Engineering", Department of Technology and Operation of Transport Engineering Machinery, Ph.D. Student; e-mail: 551@mail.ru