УДК 624.039:551.34:51-37

Н. Н. Мельников, П. В. Амосов, С. Г. Климин, Н. В. Новожилова

Оценка области оттаивания криолитозоны при эксплуатации подземной АСММ на базе численного моделирования в трехмерной геометрии

N. N. Melnikov, P. V. Amosov, S. G. Klimin, N. V. Novozhilova

Estimation of thawing cryolithic area with numerical modeling in 3D geometry while exploiting underground small nuclear power plant

Аннотация. В статье представлены результаты численного решения в трехмерной постановке тепловой задачи, связанной с оценкой области оттаивания при размещении модулей с реакторными и паротурбинными установками атомной станции малой мощности в толще многолетнемерзлых горных пород. Обсуждается влияние коэффициента теплопроводности обделки подземных выработок большого объема и пористости криолитозоны на величину глубины оттаивания и скорости движения фронта оттаивания в различных пространственных направлениях.

Abstract. The paper presents results on 3D numerical calculation of a thermal task related to assessing a thawing area when placing modules with reactor and steam-turbine facility of a small nuclear power plant in thickness of permafrost rocks. The paper discusses influence of the coefficient of thermal conductivity for large-scaled underground excavations lining and cryolithic area porosity on thawing depth and front movement velocity under different spatial directions.

Ключевые слова: подземные модули большого объема, криолитозона, пористость, коэффициент теплопроводности, фронт и глубина оттаивания.

Key words: large-scaled underground modules, cryolithic area, porosity, coefficient of thermal conductivity, front and depth of thawing.

Ввеление

В работе авторов [1] на основании ранних исследований были представлены результаты решения задачи по оценке области оттаивания криолитозоны вокруг подземной атомной станции малой мощности (АСММ) с учетом фазового перехода "лед – вода" с использованием двухмерных моделей. При этом рассматривалась следующая компоновка размещаемой в многолетнемерзлых породах подземной АСММ: два (в отдельных выработках) реакторных модуля (с реакторными установками КЛТ-40С), реакторный зал и бассейн выдержки. В указанной публикации [1] приведены результаты анализа теплового состояния многолетнемерзлых горных пород вокруг модулей АСММ (динамика разогрева породы, глубины оттаивания в горизонтальном и вертикальном направлениях).

В новом исследовании, направленном на разработку научных основ и методологии создания подземных комплексов для размещения АСММ в условиях Арктики, авторы предприняли попытку численного решения тепловой задачи в трехмерной постановке. С этой целью на основе открытой информации касательно строящейся ПАТЭС [2–4] были оценены размеры наиболее крупных помещений, в которых находятся реакторные и паротурбинные установки. Ориентировочные оценки авторов следующие: для размещения двух РУ типа КЛТ-40С и двух паровых турбин достаточно (с некоторым запасом) двух смежных подземных камер большого объема размерами $30 \times 30 \times 25\,$ м и $30 \times 45 \times 25\,$ м соответственно. Отметим, что все необходимые внутренние защитные конструкции, разделяющие РУ и турбины, а также какие-либо помещения внутри указанных объемов, для оценки теплового воздействия на криолитозону роли не играют.

Авторы не сомневаются, что при современном уровне техники и технологии подземного строительства создание выработок большого объема не является технически сложной задачей для горняков. Опыт подземного строительства в сложных горно-геологических условиях, в т. ч. и специалистов Горного института КНЦ, позволяет утверждать, что возведение указанных выше подземных сооружений реализуемо.

Целями решения задачи являются:

- 1) создание компьютерной трехмерной модели процессов теплопереноса в криолитозоне с учетом фазового перехода "лед вода" при размещении в многолетнемерзлых горных породах (ММГП) подземных выработок большого объема, имитирующих модули ACMM;
- 2) оценка области оттаивания многолетнемерзлых горных пород во времени при функционировании ACMM в режиме нормальной эксплуатации с учетом вариации ряда теплофизических параметров модели (коэффициент теплопроводности, пористость).

Описание компьютерной модели

На этапе подготовки к запланированным исследованиям были проведены оценки возможностей доступных программных продуктов: COMSOL (опция Conduction in Porous Media), PORFLOW (модель

J. A. Wheeler), собственная программа, адаптированная для оценки воздействия АСММ на вмещающие породы в условиях вечной мерзлоты. Сравнительный анализ результатов тестовых расчетов, выполненных посредством указанных программ, показал приемлемую сходимость расчетных данных [5]. Однако именно COMSOL позволяет быстро и эффективно отображать расчетную информацию в удобной графической форме.

На рис. 1 представлена геометрическая схема размещения указанных выше помещений в слое криолитозоны мощностью 110 м. Чтобы минимизировать влияние граничных условий и с учетом производительности компьютерной техники, горизонтальные размеры модели выбраны равными 200 м. Подземная АСММ размещена в ММГП на глубине 50 м, как того требуют строительные нормативы Республики Саха (Якутия) [6].

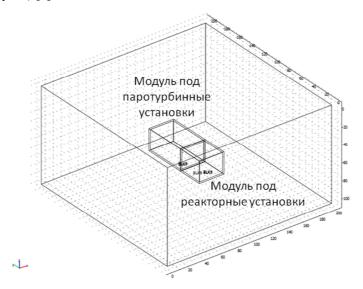


Рис. 1. Геометрическая схема модели подземной АСММ в криолитозоне

В выполненном исследовании модель ММГП включает в себя один слой вмещающего массива (без учета границы сезонных колебаний) с геотермическим градиентом $0.02~^{\circ}$ С/м. Базовое значение пористости ММГП принято равным 0.05.

В отличие от ранней работы авторов [1] в данной публикации обсуждается ситуация, когда температура во всех модулях АСММ фиксирована на уровне 20 °С. Как было показано ранее, именно при таких температурах в помещениях можно добиться минимальных размеров зон оттаивания ММГП. Низкие температуры в модулях могут быть обеспечены за счет специального усовершенствования системы вентиляции (в том числе с учетом практически неиссякаемых запасов холода).

Для решения тепловой задачи были определены граничные условия:

- 1) на поверхности условие 3-го рода (коэффициент теплообмена 10 Bt/(M^2 -K) и температура -10 °C, что примерно соответствует среднегодовой температуре в районе Билибино);
 - 2) на боковых границах условие симметрии, т. е. нулевые потоки тепла;
- 3) на нижней границе фиксированная температура, определяющаяся глубиной границы и геотермическим градиентом, т. е. -7.8 °C.

Начальные условия: для ММГП задано распределение температуры в виде линейной функции с указанным выше геотермическим градиентом, для слоев обделки принята температура 5 $^{\circ}$ C.

В расчетах проварьирован коэффициент теплопроводности обделки $(2,0,\ 0,5\ \text{и}\ 0,05\ \text{Вт/(м·К)})$. Толщина слоя обделки принята равной 1 м.

Теплофизические параметры зон модели, которые обсуждались авторами в работе [1], приведены в таблице.

Таблица

Теплофизические параметры зон модели

Параметры	ММГП	Обделка
Коэффициент теплопроводности, Вт/(м·К)	1,8	2,0
Удельная теплоемкость, Дж/(кг-К)	800	840
Плотность, кг/м ³	2200	2 500

Продолжительность времени моделирования -16 лет при временном шаге сохранения информации 2 года.

Анализ результатов расчетов

Приведем несколько примеров результатов численных экспериментов. Изображение динамики (с шагом 4 года) пространственного распределения изоповерхностей температуры в сечении, проходящем практически через середину реакторного зала, представлено на рис. 2.

В данном расчете коэффициент теплопроводности обделки равен 2 Вт/(м·К), что позволяет получить наиболее презентабельное изображение. Хорошо виден постепенный разогрев ММГП и переход льда порового пространства породы в жидкую фазу вокруг реакторного модуля с максимальной скоростью разогрева на начальной стадии эксплуатации АСММ и постепенным снижением скорости разогрева в последующие годы. При меньших значениях коэффициента теплопроводности обделки (0,5 и 0,05 Вт/(м·К)) области разогрева, а значит, и оттаивания, заметно уменьшаются, графическая картина становится менее презентабельной.

Более наглядными являются другие виды графиков, посредством которых можно получить интересные количественные показатели. Например, на рис. 3 (с шагом 2 года) представлена динамика пространственного распределения температуры вдоль оси Y от внешней границы области моделирования до внешней стенки модуля при вариации коэффициента теплопроводности обделки. При этом рис. 3, a—a соответствуют указанному выше базовому значению пористости ММГП, т. е. 0,05, а рис. 3, a — увеличенному вдвое, т. е. 0,10. Естественно, что пространственное распределение температуры вдоль оси a0 противоположной стороны модуля будет идентичным.

Аналогичные распределения температуры вдоль оси X представлены на рис. 4 (с шагом 2 года). Отличие в поведении кривых рис. 3 и 4 имеется и объясняется различием в размерах сторон модулей вдоль осей X и Y. Как видно на рис. 1, максимальная протяженность подземной выработки отвечает оси Y. Поэтому из физики процесса следует ожидать максимальные глубины оттаивания вдоль оси X.

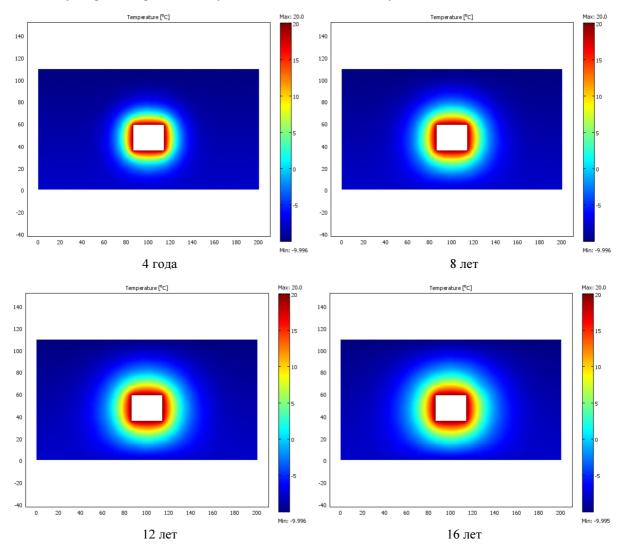


Рис. 2. Динамика пространственного распределения температуры в сечении модели через середину реакторного модуля (коэффициент теплопроводности обделки 2 Bт/(м·К))

Анализ кривых, представленных на рис. 3, a—e и 4, a—e, показывает, что максимальная скорость оттаивания ММГП (отслеживаем температуру 0 °C) имеет место в первые два года эксплуатации АСММ. Причем заметного различия по направлениям X и Y не наблюдается. Так, для коэффициента теплопроводности обделки 2 Вт/(м·К) (рис. 3, a и рис. 4, a) скорость движения фронта оттаивания находится на уровне 4 м/год, а для коэффициента теплопроводности обделки 0,5 Вт/(м·К) (рис. 3, δ и рис. 4, δ) скорость движения фронта оттаивания составляет около 2,7 м/год. Для минимального значения коэффициента теплопроводности обделки (0,05 Вт/(м·К)) (рис. 3, δ и рис. 4, δ) скорость движения фронта оттаивания нулевая. Как видно из графиков рис. 3, δ и 4, δ 0, в последующие два года скорость движения фронта оттаивания снижается в разы. К 16 годам эксплуатации АСММ глубина оттаивания составляет для коэффициента теплопроводности 2 Вт/(м·К) примерно 17 м вдоль оси δ 1 и 20 м вдоль оси δ 2 для коэффициента теплопроводности 0,5 Вт/(м·К) оприблизительно 14 м вдоль оси δ 3 и 17 м вдоль оси δ 4. Для коэффициента теплопроводности 0,05 Вт/(м·К) зон оттаивания в обоих направлениях не прогнозируется.

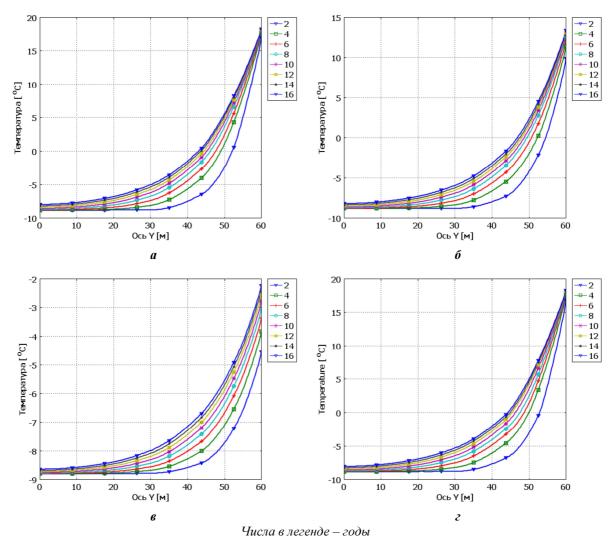


Рис. 3. Динамика пространственного распределения температуры вдоль оси Y при вариации коэффициента теплопроводности обделки и пористости ММГП: a-2 Вт/(м·K); $\delta-0.5$ Вт/(м·K); $\delta-0.5$ Вт/(м·K) при пористости ММГП 0.05; $\varepsilon-2$ Вт/(м·K) при пористости ММГП 0.10

Эффект влияния пористости на глубину оттаивания можно хорошо проследить на графиках рис. 3, a, e и 4, a, e. Как было показано авторами ранее [7] на базе двухмерных моделей, с ростом пористости происходит снижение глубины оттаивания. Данный результат объясняется физикой процесса: рост пористости увеличивает затраты энергии на фазовый переход "лед — вода". Анализ результатов расчетов в трехмерной геометрии также подтверждает сделанный ранее вывод, что отчетливо проявляется в поведении кривых рис. 3, a, e и рис. 4, e, e. В частности, на примере рис. 3, e, e имеем следующие результаты: на 2 года процесса моделирования глубина оттаивания снижается на 1 м (с e8 м до e7 м), а на 16 лет — на 2 м (с e17,5 м до e15,5 м) соответственно. Аналогичная ситуация прогнозируется и вдоль оси e

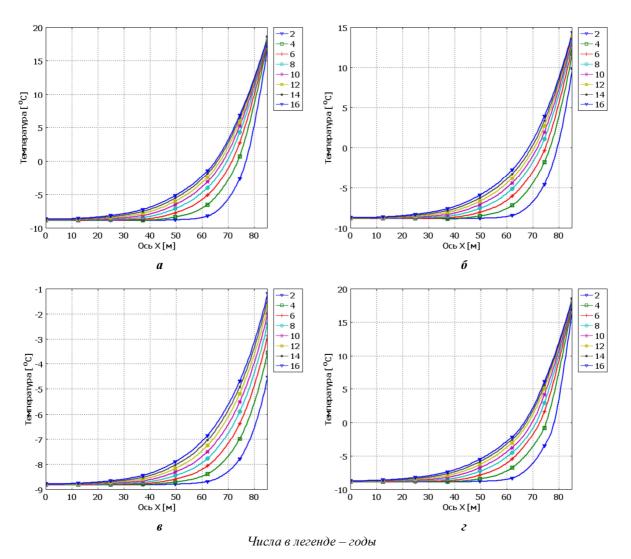


Рис. 4. Динамика пространственного распределения температуры вдоль оси X при вариации коэффициента теплопроводности обделки и пористости ММГП: a-2 Вт/(м·K); $\delta-0.5$ Вт/(м·K); $\delta-0.5$ Вт/(м·K) при пористости ММГП 0.05; $\varepsilon-2$ Вт/(м·K) при пористости ММГП 0.10

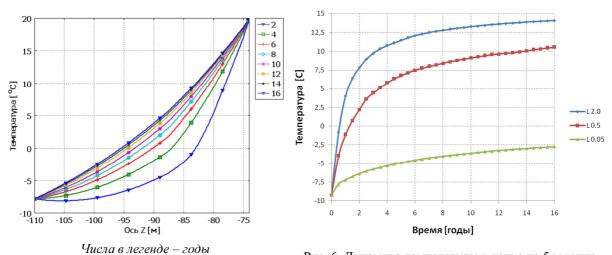


Рис. 5. Динамика пространственного распределения температуры вдоль оси Z при коэффициенте теплопроводности обделки 2 Вт/(м·К) и базовой пористости ММГП 0,05

Рис. 6. Динамика температуры в точке на 5 м выше кровли выработки при вариации коэффициента теплопроводности обделки: $pомб-2\ Bt/(m\cdot K);\ квадрат-0,05\ Bt/(m\cdot K);$ $tpeyгольник-0,05\ Bt/(m\cdot K)$

В вертикальном направлении авторы также проанализировали пространственные распределения температуры как вниз от подземных модулей, так и вверх. На рис. 5 (с шагом 2 года) приведена динамика пространственного распределения температуры вдоль оси Z вниз от модулей АСММ для самой презентабельной ситуации (коэффициент теплопроводности обделки 2 Вт/(м·К)). Хорошо видно, как изменяется вид графиков на различные моменты времени и скорость движения фронта оттаивания. Например, в первые два года процесса моделирования скорость оттаивания составляет около 4 м/год, а в последующие два года она снижается до 2,5 м/год. При этом на момент завершения расчета (16 лет) глубина оттаивания уже превышает 20 м. В направлении вверх от модулей авторами дополнительно прослежена динамика температуры в точке, удаленной от кровли выработки на 5 м. На рис. 6 представлена динамика температуры в указанной точке при вариации коэффициента теплопроводности обделки. При максимальном значении коэффициента теплопроводности требуется менее года, а при среднем значении — немного более года, чтобы окрестности вблизи анализируемой точки перешли во "влажное" состояние. В то же время при минимальном значении коэффициента теплопроводности фазовый переход не прогнозируется на протяжении всего времени функционирования АСММ.

Заключение

По итогам выполненных исследований можно сделать следующие выводы.

Создана трехмерная компьютерная модель процессов теплопереноса в криолитозоне с учетом фазового перехода "лед — вода" при размещении в ММГП модулей АСММ в форме выработок большого объема. Разработанные модели позволили выполнить симуляцию переноса тепла в криолитозоне при фиксированном значении температуры в модулях АСММ на уровне 20 °С и при вариации коэффициента теплопроводности обделки с $2 \, \text{Вт/(м·K)}$ до $0.05 \, \text{Вт/(м·K)}$, а также пористости ММГП (5 и $10 \, \%$).

Анализ результатов численных экспериментов (на 16 лет процесса моделирования) в форме пространственного распределения температуры по сечениям модели и вдоль пространственных осей на фиксированные моменты времени, а также динамики температуры в фиксированной точке пространства свидетельствует:

- максимальная скорость движения фронта оттаивания прогнозируется в первые два года функционирования АСММ при максимальном коэффициенте теплопроводности обделки на уровне 4 м/год с последующим замедлением скорости движения;
- максимальные глубины оттаивания (на уровне 20 м) соответствуют максимальному значению коэффициента теплопроводности обделки;
- использование при строительстве обделки материалов с низкими значениями коэффициентов теплопроводности (эффективный коэффициент теплопроводности на уровне 0,05 Bt/(м·K)) позволяет обеспечить целостность криолитозоны.

Библиографический список

- 1. Оценка теплового воздействия подземной атомной станции малой мощности на многолетнемерзлые горные породы / Н. Н. Мельников, П. В. Амосов, С. А. Гусак, Н. В. Новожилова, С. Г. Климин // Криосфера Земли. 2015. Т. XIX, № 2. С. 45–51.
- 2. Макеев Г. А. Создание плавучих энергетических блоков: современное состояние и варианты будущих проектов // Атомные станции малой мощности: новое направление развития энергетики: Т. 2 / под ред. акад. РАН А. А. Саркисова. М. : Академ-Принт, 2015. С. 130–138.
- 3. Никитин А., Андреев Л. Плавучие атомные станции. Доклад объединения Bellona. Осло, 2011. 48 с.
- 4. Бахметьев А. М., Большухин М. А., Лепехин А. Н. Расчетно-экспериментальное обоснование безопасности РУ КЛТ-40С для плавучей АСММ [Электронный ресурс] : презентация доклада // Межотраслевая межрегиональная науч.-техн. конф., Москва, 11–12 ноября 2010 г. М., 2010. электрон. опт. диск (CD-ROM).
- 5. Амосов П. В. Проверка кода для численного моделирования тепловых процессов в пористой среде с учетом фазового перехода "лед вода" // Вестник МГТУ. 2013. Т. 16, № 4. С. 641–643.
- 6. Подземные объекты в горных выработках криолитозоны Якутии. ТСН 31-323-2002 Республики Саха (Якутия). URL: http://www.complexdoc.ru/ntdpdf/481072/podzemnye_obekty_v_gornykh_vyrabotkakh kriolitozony yakutii.pdf.
- 7. Амосов П. В., Новожилова Н. В. Влияние пористости многолетнемерзлых горных пород на глубину оттаивания // Вестник КНЦ РАН. 2014. № 2 (17). С. 58–64.

References

1. Otsenka teplovogo vozdeystviya podzemnoy atomnoy stantsii maloy moschnosti na mnogoletnemerzlye gornye porody [The thermal impact of a small underground nuclear plant on permafrost] / N. N. Melnikov, P. V. Amosov, S. A. Gusak, N. V. Novozhilova, S. G. Klimin // Kriosfera Zemli. 2015. V. XIX, N 2. P. 45–51.

- 2. Makeev G. A. Sozdanie plavuchih energeticheskih blokov: sovremennoe sostoyanie i varianty buduschih proektov [Construction of floating power-generating units: State-of-the-art and future projects] // Atomnye stantsii maloy moschnosti: novoe napravlenie razvitiya energetiki: T. 2 / pod red. akad. RAN A. A. Sarkisova. M.: Akadem-Print, 2015. P. 130–138.
- 3. Nikitin A., Andreev L. Plavuchie atomnye stantsii [Floating nuclear plants]. Doklad ob'edineniya Bellona. Oslo, 2011. 48 p.
- 4. Bahmetev A. M., Bolshuhin M. A., Lepehin A. N. Raschetno-eksperimentalnoe obosnovanie bezopasnosti RU KLT-40S dlya plavuchey ASMM [Calculation-experimental verification of KLT-40C reactor units safety for a floating small nuclear power plant] [Elektronnyi resurs]: prezentatsiya doklada // Mezhotraslevaya mezhregionalnaya nauch.-tehn. konf., Moskva, 11–12 noyabrya 2010 g. M., 2010. elektron. opt. disk (CD-ROM).
- 5. Amosov P. V. Proverka koda dlya chislennogo modelirovaniya teplovyh protsessov v poristoy srede s uchetom fazovogo perehoda "led voda" [Control of code for numerical modeling of thermal processes in pore medium with accounting "ice water" phase transfer] // Vestnik MGTU. 2013. V. 16, N 4. P. 641–643.
- 6. Podzemnye ob'ekty v gornyh vyrabotkah kriolitozony Yakutii [Underground facilities in the mining excavations at the Yakutia cryolithic zone]. TSN 31-323-2002 Respubliki Saha (Yakutiya). URL: http://www.complexdoc.ru/ntdpdf/481072/podzemnye obekty v gornykh vyrabotkakh kriolitozony yakutii.pdf.
- 7. Amosov P. V., Novozhilova N. V. Vliyanie poristosti mnogoletnemerzlyh gornyh porod na glubinu ottaivaniya [Influence of permafrost porosity on thawing depth] // Vestnik KNTs RAN. 2014. N 2 (17). P. 58–64.

Сведения об авторах

Мельников Николай Николаевич — Горный институт КНЦ РАН, академик РАН, науч. руководитель; Кольский филиал Петрозаводского государственного университета, зав. кафедрой; e-mail: root@goi.kolasc.net.ru

Melnikov N. N. – Mining Institute KSC RAS, Academician RAS, Research Director; Kola Branch of Petrozavodsk State University, Head of Department; e-mail: root@goi.kolasc.net.ru

Амосов Павел Васильевич – Горный институт КНЦ РАН, канд. техн. наук, ст. науч. сотрудник; e-mail: vosoma@goi.kolasc.net.ru

Amosov P. V. – Mining Institute KSC RAS, Cand. of Tech. Sci., Senior Research Associate; e-mail: vosoma@goi.kolasc.net.ru

Климин Сергей Гарольдович – Горный институт КНЦ РАН, вед. технолог; e-mail: klimin@goi.kolasc.net.ru

Klimin S. G. – Mining Institute KSC RAS, Leading Technologist; e-mail: klimin@goi.kolasc.net.ru

Новожилова Наталья Викторовна — Горный институт КНЦ РАН, науч. сотрудник; e-mail: nat1966kis@mail.ru

Novozhilova N. V. – Mining Institute KSC RAS, Research Associate; e-mail: nat1966kis@mail.ru